flux n. 1.流,流出;流動。 2.漲潮。 3.不斷的變動,波動。 4.【物理學】流量,通量,電通量,磁通量。 5.熔解,熔融;助熔劑;焊劑。 6.【醫學】異常溢出;腹瀉。 luminous flux 【物理學】光通量。 radiant flux 【物理學】輻射通量。 soldering flux 焊劑。 be [remain] in (a state of) flux 動蕩不定,不斷變動。 flux and reflux (潮水的)漲落;(勢力的)不斷消長。 vt. 1.熔化,使熔解。 2.用助熔劑處理。 vi. 1.(潮)漲;流出。 2.熔化。
Numerical fluxes considered in the explicit portion of the algorithm were evaluated by an implicit high - order compact scheme to augment stability . meanwhile , an implicit high - order compact numerical filter was used 顯式一邊的空間導數采用具有較高精度和良好數值穩定性的隱式高階緊致差分格式,同時采用適于低馬赫數流動計算的隱式高階數值過濾方法。
In order to achieve a computer code with a maximum degree of vectorization , the numerical flux function must be written uniformly with sign function . to get higher order accuracy , the muscl interpolation functions are applied for van leer and roe schemes Vanleer和roe格式摘要( abstraet )均采用muscl插值使格式具有高階精度,并采用連續可微的vanalbada通量限制器,使格式具有良好的穩定性和收斂特性。
In these regions , an expensive high - order accurate eno scheme is applied to evaluate the numerical flux at cell boundaries . and hi smooth regions a cheap spline interpolation is used to get the value of the numerical divergence from values previously obtained on lower resolution scales to save the computational cost 在這些奇性區域,我們利用代價昂貴的高階基本無振蕩格式計算單元邊界的數值通量;而在解光滑的區域,則用廉價的樣條插值根據先前低分辨尺度上得到的值來計算出其數值散度,從而減少計算工作量。
In this work , we detailedly introduced the whole ideas of rkdg finite element method and the theory of constructing gas - kinetic schemes based on boltzmann equation . and then presented a kind of new computational method for solving id and 2d compressible euler equations , i . e . firstly , we discretize euler equations in the space with discontinuous galerkin finite element method ; secondly , we discretize temporal variable t with runge - kutta formula ; thirdly , for numerical fluxes constructing , we give two kinds of different numerical fluxes - kfvs and bgk numerical fluxes by using gas - kinetic schemes 本文分別對rkdg有限元方法的整個思想和基于boltzmann方程的分子動力學格式的構造思想給予了詳細的介紹,并分別結合rkdg有限元方法與kfvs數值通量和bgk數值通量的構造方法,給出了一種求解一維、二維可壓縮流體力學方程組新的計算方法,即,我們先用間斷有限元方法進行空間離散,然后再對所得到的半離散格式使用runge - kuttatvd方法進行時間離散,得到全離散格式。
In fluid field solving , the numerical flux is estimated using high - accuracy roe scheme with limiter . in time marching , we use dual - time stepping together with implicit lu - sgs scheme and get reasonable results efficiently . the difference of the fluid computation between single grid and overset grids lies in the dispose of the computation boundary 流場解算時,對流場數值通量的求解采用的是帶限制器的高階精度roe格式,時間推進采用了含雙時間步長的隱式lu - sgs ( lower - uppersymmetricgauss - seidel )格式,提高了求解的效率。
This paper applies kami ' s method to analyze conservative scheme in lagrangian coordinate , and then selects one of upwind schemes which do not show oscillations , finally applies it to construct high resolution scheme . numerical flux of one order scheme is used near interface , while numerical flux of high resolution scheme is adopted in other area 本文在對lagrange坐標系下的守恒型格式進行詳細分析后,甄選出不震蕩的一階迎風型格式,然后應用于lagrange坐標系下的高分辨率格式,在物質交界面處采用不震蕩的一階迎風型格式的數值通量,而在其余地方采用高分辨率格式的數值通量。